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Abstract

The shakedown analysis of structures under variable loads is considered, and the corresponding variational prin-

ciples are presented. Separate formulations for elastic (or classical) shakedown, plastic shakedown and incremental

collapse are compared. Two upper bounds for classical safety factors are presented and interpreted as the result of

separate analysis concerning alternating plasticity and prevention of simple mechanisms of incremental collapse. As a

®rst application, exact solutions are obtained for a closed tube under variable pressure and temperature. This example is

the Bree problem with logarithmic temperature variation across the wall. A ®nite element procedure for shakedown

analysis of tubes is then presented. This numerical procedure is validated by comparison with the exact solutions for the

closed tube. Finally, the numerical method is applied to a restrained tube under variable pressure and logarithmic

temperature. Ó 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Shakedown; Plasticity; Cyclic load; Variational formulations; Finite elements

1. Introduction

In this paper, the classical (elastic) shakedown approach is compared with safety analysis for prevention
of incremental collapse and also with safety assessment against alternating plasticity (Maier, 1972, 1977;
Christiansen, 1980; Fremond and Friaa, 1982; K�onig, 1979, 1987; Polizzotto, 1993; Kamenjarzh, 1996;
Mr�oz et al., 1995).

For a structure, made of a perfectly plastic material, under a combination of ®xed and variable loads, the
three types of failure modes are alternating plasticity (plastic shake down), incremental collapse (ratchet-
ing), or instantaneous collapse (plastic collapse). Classical shakedown theory, here called elastic shake-
down, deals with the prevention of any of the aforementioned phenomena. Indeed, the main objective in the
analysis of structures under variable loads is the computation of the load ampli®cation factor, l, ensuring
elastic shakedown.
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The present article is organized in three parts. In the ®rst part, Sections 2 and 3, variational principles
for shakedown analysis are formulated and compared. These principles give the safety factor for elastic
shakedown, l, as the extremum value of static, kinematic or mixed constrained functionals. Similar
principles are also stated for the safety factors x and q concerning separate and exclusive prevention of
alternating plasticity or simple mechanisms of incremental collapse (SMIC). The concept of SMIC is pre-
cisely de®ned there. Central to this discussion is the bounding relation l6 minfx; qg. The ®rst part of this
paper is the necessary background for the application given in the second part, and follows three previous
works: Silveira and Zouain (1997), Zouain and Silveira (1999, 2000).

In the second part, Section 4, an application is considered. A variant of the classical tube problem,
established by Bree (1967), as considered by Gokhfeld and Cherniavsky (1980), is solved and here in an
exact form, almost closed. It consists of a closed thick tube under variable pressure and temperature with a
logarithmic instantaneous pattern of temperature decay across the wall. Straightforward application of the
kinematical principle for simple mechanisms of incremental collapse leads to the exact solution for the
range of loading, where ratcheting is critical. The theoretical necessary condition, presented in the ®rst part,
is veri®ed in this case, so as to ensure that no gap exists between the exact safety factor l (elastic shake-
down) and its upper bound q (SMIC).

In the third part of this paper, Section 5, we present a ®nite element procedure for shakedown analysis of
tubes. This numerical procedure is validated by comparison with the exact solutions for the closed tube
obtained in Section 4. Finally, the numerical method is applied to a restrained tube under variable pressure
and logarithmic temperature. For the same problem, Hyde et al. (1985) performed step-by-step ®nite ele-
ment analyses along speci®c cyclic loading histories which lead to stabilized ratchet strains. The shake-
down/ratcheting boundary is predicted there by interpolation and extrapolation of the results of those
incremental analyses. The present shakedown limit is the only direct solution, available in the literature, for
the restrained tube considered, and it is in agreement with Hyde et al. results for speci®c cyclic loadings.

2. Shakedown analysis

Some basic notation is established ®rst. Consider a body B and let v 2 V denote a velocity ®eld (V is the
functional space of admissible velocities). Likewise, D 2 W denotes a strain rate ®eld, and T 2 W 0 is a stress
®eld (W and W 0 are dual spaces). Let T̂ and D̂ represent values of the ®elds T and D at a point x of the body.
Then, the internal power is denoted

hT ;Di �
Z

B

T̂ � D̂dB: �1�

The kinematics relation is written as D � Dv, where D is the deformation operator. The set of self-
equilibrated stress ®elds T r (residual stresses) is denoted as Sr (an a�ne manifold, i.e. a set obtained by
adding all the elements of a linear space to a ®xed vector).

2.1. Material relationships

This paper is presented in the framework of elastic, ideally plastic materials, with associated plastic ¯ow,
characterized here by the set P � W 0 of plastically admissible stress ®elds. The usual way of de®ning P is to
choose an m̂-vector valued function f describing the local yield criterion (Maier, 1972; Polizzotto, 1993).
Then, the following local set is de®ned:

P̂ � fT̂ j f �T̂ �6 0g: �2�
Likewise, the closed convex set P of plastically admissible stress ®elds is
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T 2 P () fT̂ 2 P̂ 8x 2 Bg: �3�
The stress-free state of the body is assumed admissible, i.e. T � 0 2 P .

The plastic dissipation is de®ned by

v̂�D̂p� � sup
T̂�2P̂

�T̂� � D̂p� �4�

with global counterpart: v�D� � supT2P hT ;Di �
R

B
v̂�D̂�dB. These functions are sublinear, i.e. convex and

positively homogeneous of the ®rst degree.
The associated ¯ow law can now be written in the compact form (Fremond and Friaa, 1982; Kam-

enjarzh, 1996; Borges et al., 1996)

T 2 ov�D�; �5�
where ov denotes the subdi�erential of v (Rockafellar, 1973). We brie¯y recall that the subdi�erential of a
function v at a point D is the cone de®ned by the gradients of the function computed at all points adjacent
to D at in®nitesimal distance and in all directions. It coincides with the classical gradient in regular points.
An equivalent de®nition is T 2 ov�D� () fv�D�� ÿ v�D�P T � �D� ÿ D� 8D�g.

2.2. The domain of variable loading

The design data for shakedown analysis are a prescribed range of variable loading D� containing any
feasible history of external loads, cyclic or not. External loading may include mechanical and thermal
actions. Consequently, we better represent any external action, either a mechanical or a thermal load, by
the stress ®eld T e which is the unique solution of the corresponding purely (or unlimited) elastic problem.
Then, the data for shakedown analysis will be given in terms of a set De of (elastic) stress ®elds representing
the domain of variation of mechanical and thermal loading.

Furthermore, shakedown principles can be stated using the envelope D of the domain of elastic stresses
De, which is precisely de®ned in the following. For each point x of the body, consider the set D̂ of all stress
tensors T̂ which are local values of elastic stresses T e 2 De associated to any feasible loading. We now de®ne
the set D, in the space of stress ®elds, as constituted of all stress distributions T satisfying T̂ 2 D̂ for any
point x in the body.

As a mechanical interpretation, any virtual stress ®eld T in the set D may be sought as collecting local
values of elastic stresses, which are produced, at di�erent instants, along a certain admissible loading
program (cyclic or not).

Additionally, we call critical stresses program a particular stress ®eld T 2 D which is the solution of a
shakedown problem. The set of thermo-mechanical external loadings which produce all the pointwise
values of this stress ®eld T constitute the critical loading program, or cycle, responsible for the incipient
failure with lowest amplifying factor.

We give an example of a virtual stress ®eld T 2 D in the shakedown analysis of the closed tube under
thermo-mechanical loading considered in Section 4. Indeed, the incremental collapse solution, T 2 D,
representing the critical loading program for the closed tube of Section 4, complies with the following
description. It coincides with the elastic stress produced by pure (peak) pressure, for any radial coordinate
R smaller than a transition radius Rt. For the external part of the tube, i.e. R P Rt, the active stress is the
elastic stress produced by combined (peak) pressure and (peak) temperature. This completes the description
of a stress ®eld, suitable to represent the critical loading program, which is an element of the envelope of
elastic stresses D de®ned above. Notice that this stress ®eld cannot be associated, by elastic equations, to a
single combination of pressure and temperature, i.e. T 62 De � D although T 2 D.
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We de®ne below a function that represents the maximum external power, over an assumed rate of de-
formation, obtained from any feasible loading history.

û�D̂p� � sup
T̂�2D̂
�T̂� � D̂p�: �6�

The total counterpart is u�Dp� � supT2DhT ;Di �
R

B
û�D̂p�dB. This is the support function of the set D,

hence is sublinear.

2.3. Elastic shakedown

The main concern in shakedown analysis is to ensure elastic shakedown, thus preventing the three failure
modes under variable loading, i.e. plastic shakedown, incremental collapse (or ratcheting) and plastic
collapse (or ``instantaneous'' failure).

Bleich and Melan theorem ensures that any load factor l� is safe if there exists a ®xed self-equilibrated
stress ®eld T r, such that its superposition with any stress belonging to the ampli®ed load domain l�D is
plastically admissible. The limit load factor l for elastic shakedown is the supremum of safe factors; this
leads to a variational principle.

Equilibrium formulation for elastic shakedown

l � sup
l�2R

T r2W 0

l�
l�D� T r � P
T r 2 Sr

����� �
: �7�

The notation used in the plastic admissibility constraint above means

l�D� T r � P () fl�T � T r 2 P 8T 2 Dg: �8�
The solution of the equilibrium formulation for elastic shakedown consists of a translation T r and an

ampli®cation factor l. The translation T r is constrained to belong to the a�ne manifold of residual stresses,
Sr. The load domain D is translated and ampli®ed, and the resulting set is constrained to remain entirely
contained in the plastically admissible set P. The optimal T r moves the prescribed set so as to allow for the
maximal ampli®cation, l.

2.4. Plastic shakedown

Consider now the computation of the safety factor x (for the design range of variations D) which
prevents exclusively against plastic shakedown. Thus, it is only avoided here and all critical loading pro-
grams that produce some plastic deformation after any arbitrary large time, although the net strain in-
crements vanish in some in®nite sequence of instants. This mode of failure is called alternating plasticity
because it frequently consists of equal direct and reverse plastic deformation at every cycle.

Following Polizzotto (1993), a load factor x� is safe with respect to plastic shakedown if there exists a
®xed stress distribution T o (not necessarily self-equilibrated) such that, when superposed to any stress
belonging to the ampli®ed domain of variation x�D, the yield criterion does not violate anywhere. This
criterion leads to the following variational principle.

Equilibrium formulation for plastic shakedown

x � sup
x�2R

T o2W 0

fx� j x�D� T o � Pg: �9�

Due to the de®nition of the sets P and D, the constraints in this variational principle restrains the values of
the stress tensor at each point in the body independently of any other point. Consequently, computation of
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the limit load factor x against plastic shakedown consists in solving uncoupled nonlinear problems for each
point of the body and retaining the minimum value of the amplifying factors thus obtained.

The statical formulation for elastic shakedown, Eq. (7), may be obtained from the statical formulation
for plastic shakedown Eq. (9), by just adding the self-equilibrium constraint. Hence, the modi®ed supre-
mum thus obtained, l, can only be less or equal than the original, x. This proves formally that ensuring
elastic shakedown prevents plastic shakedown to occur, i.e. l6x. Several simple examples can be given,
where this inequality is satis®ed as an equality. Roughly speaking, this is the case when stress concentra-
tions are critical, and so are alternating plasticity cycles.

Computing the safety factor x against plastic shakedown as an estimation for the elastic shakedown
safety factor l is convenient because (i) it gives an upper bound, (ii) the estimation is exact in some range,
and (iii) the computation of x, by means of a sequence of local problems, is simpler than the computation
of l.

3. An upper bound

In this section, we look for an upper bound load factor q aiming the range of situations when ratcheting
cycles are critical.

The upper bound proposal is based on the identi®cations of simple mechanisms of incremental collapse,
briel¯y SMIC, among general ratcheting mechanisms. An incremental collapse mechanisms, where plastic
deformation accumulates in every cycle is called SMIC if in this incremental deformation ®eld no single
point undergoes plastic strain more than once per cycle.

It is proven in Zouain and Silveira (1999) that the prevention of simple mechanisms of incremental
collapse, and only this, is assured by the safety factor q determined as follows.

Equilibrium formulation for SMIC

q � inf
T2W 0
f~q�T � j T 2 Dg; �10�

where

~q�T � � sup
q�2R

T r2W 0

q�
q�T � T r 2 P
T r 2 Sr

����� �
: �11�

Also, a change of variables gives

~q�T � � sup
q�2R

T c2W 0

fq� j T c 2 P \ S�q�D0T �g �12�

with S�F � denoting the set of all stress ®elds equilibrated with the load F, and D0, the equilibrium operator.
The optimization formulation that de®nes the functional ~q�T � is a problem of limit analyses (see, for

instance: Kamenjarzh, 1996; Fremond and Friaa, 1982; Christiansen and Andersen, 1998; and Borges et al.,
1996). The stress ®eld T determines the associated reference load D0T , i.e. the data for limit analysis.

Statement (10) of the inadaptation analysis for simple mechanisms of incremental collapse is meaningful
in physical terms. Indeed, this analysis may be interpreted as the problem of ®nding the stress ®eld in the
envelope of variable elastic stresses, minimizing the plastic collapse factor. We may take advantage of this
concept in the development of numerical procedures aimed to compute the safety factor against SMIC.
This has been treated in Silveira and Zouain (1997).

The inf±sup formulation in Eq.(10) is obtained in Zouain and Silveira (1999) as the dual problem of the
statical principle (7) by interchanging the variables �T r;l� with T. This statical dualization, unlike the usual
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statical-kinematical dualization, de®nes a pair of dual problems which may e�ectively have di�erent op-
timal values, thus presenting a duality gap.

A basic theorem of optimization theory (Rockafellar, 1973) ensures, under very general hypotheses, that
the optimal value of an inf±sup problem is greater or equal than the optimal value of its sup±inf dual, i.e.
the duality gap is non-negative. This is called the weak duality theorem in minimax theory. Any strong
duality theorem, ensuring that the gap is zero, needs more restrictive hypotheses (Rockafellar, 1973;
Christiansen, 1980). In the present context, weak duality proves the following result:

l6 q; �13�
i.e. ensuring elastic shakedown prevents simple mechanisms of incremental collapse to occur. Next, we
brie¯y discuss on the usefulness of the present upper bound.

A simple plane stress situation with constrained deformation and thermo-mechanical loading is shown
to present an e�ective gap between q and l. It is the case of a small block, restrained in one direction, and
made of a material that obeys the Mises criterion, when submitted to independent variable temperature and
mechanical load. That is, the deformation in one direction of the plane of stresses is restrained, and a
mechanical load acts in the orthogonal direction of this plane. The computations for this example are given
in Zouain and Silveira (1999). This counterexample proves mathematically that no completely general
theorem of strong duality may exist, for the formally dual problems representing static formulations of
elastic shakedown and SMIC.

Nevertheless, an elementary bending problem under combined axial force and variable bending moment
presents no gap between q and l, as shown in Silveira and Zouain (1997). This demonstrates that we may
frequently ®nd the favorable situation l � q. Furthermore, the following proposition (Zouain and Silveira,
1999) proves that this case can be safely recognized.

Proposition 1. A su�cient condition to ensure that there exists some simple mechanism of incremental collapse
which is also critical for elastic shakedown analysis. i.e. that it holds

l � q �14�
is that the solutions q and T r of the SMIC problem satisfy the following admissibility condition:

qD� T r � P : �15�
In the sequel, the statical formulation for SMIC is transformed, by dualization, into a kinematical

principle (Silveira and Zouain, 1997). Firstly, we write the limit analysis problem (11) in the following
kinematical formulation:

~q�T � � inf
v2V
fv�Dv� j hT ;Dvi � 1g: �16�

Then, substitution of Eq. (16) in Eq. (10), gives
Mixed formulation for SMIC

q � inf
v2V

T2W 0
v�Dv� hT ;Dvi � 1

T 2 D

����� �
: �17�

Furthermore, a main result in Silveira and Zouain (1997) is that the above variational problem also
admits a purely kinematical formulation.

Kinematical formulation for SMIC

q � inf
v2V
fv�Dv� j u�Dv� � 1g: �18�
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Since v and u are positive homogeneous of the ®rst degree, it also holds

q � inf
v2V

v�Dv�
u�Dv� j u�Dv�

�
> 0

�
: �19�

The stationary conditions of the SMIC analysis, corresponding to the extremum principles (10), (17) and
(18), include the constraints hT ;Dvi � 1 and T r 2 Sr, together with

qT � T r 2 ov�Dv�; �20�

T 2 ou�Dv�: �21�
These optimality conditions justify the name SMIC adopted to identify the particular class of failure

mode that has been exclusively prevented in the bounding principles (10), (17) or (18).
In fact, we recognize above a purely plastic collapse mechanism v, whose strain rate ®eld, Dv, is related,

via the plastic ¯ow (20), to a single critical stress ®eld, T c � qT � T r. These critical stresses do not exist at
every point simultaneously (at the same load); they occur sequentially along the critical cycle of loading.
Likewise, the plastic strain rate ®eld, Dv, is a cumulative mechanism of deformation, not necessarily a
synchronous one. This type of velocity ®elds, v, are here called simple mechanisms of incremental collapse
with respect to more complex mechanisms, also found among incremental collapse phenomena. These
complex mechanisms produce compatible strain rates, Dv, which are a sum of plastic deformations at each
point, not a single one. Complex mechanisms are realized, for instance, in the solution of the tube under
thermo-mechanical loading considered in Zouain and Silveira (2000).

4. A closed tube under variable temperature and pressure

We present in this section analytical solutions for a closed thick tube submitted to independent varia-
tions of internal pressure and temperature. The instantaneous temperature pattern is logarithmic across the
wall thickness and vanishes cyclically. The material behaves following von Mises model. This case, con-
sidered by Gokhfeld and Cherniavsky (1980, p. 167±175), is a variant of the fundamental Bree problem
(Bree, 1967; Ponter and Karadeniz, 1985; Robinson, 1991; Phan, 1995).

Consider a long tube with closed ends. The internal and external radii are Rint and Rext, respectively. The
radial coordinate R is substituted by the dimensionless radius r, given below, together with the relevant
geometric parameter `.

r :� R
Rext

; ` :� Rext

Rint

: �22�

4.1. Loading conditions

The internal pressure pint varies between 0 and �pint. Accordingly, the dimensionless mechanical parameter
is de®ned as

p :� pint

�`2 ÿ 1�rY

; �23�

where rY denotes the yield stress. Then, p varies between 0 and �p :� �pint=�`2 ÿ 1�rY.
Plastic collapse of the tube is produced at the following internal pressure:

pc � 2���
3
p rY ln `: �24�

N. Zouain, J.L. Silveira / International Journal of Solids and Structures 38 (2001) 2249±2266 2255



This suggests the use of an additional dimensionless parameter, de®ned as

p̂ :� pint

pc

�
���
3
p

bp �25�

varying between 0 and p̂ :� ���
3
p

b�p. We used above, for convenience, the expression

b :� `
2 ÿ 1

2 ln `
: �26�

Notice that ` < b < `2 because ` > 1. Further, the approximations representing thin tubes are obtained for
`! 1�, that implies b! 1�.

Independently from pressure, the di�erence between internal and external wall temperatures, Hint ÿHext,
varies between 0 and �H. The temperature at a distance r of the axis is assumed to follow, at any instant, the
steady state pattern

H � Hext ÿ �Hint ÿHext� ln r
ln `

: �27�

Then, a suitable dimensionless thermal parameter is

q :� EcH�Hint ÿHext�
2rY�1ÿ m��`2 ÿ 1� ; �28�

where E denotes Young's modulus, m is Poisson's coe�cient, and cH is the thermal expansion coe�cient.
Consequently, the prescribed limits for temperature loading are 0 and �q :� EcH

�H=2rY�1ÿ m��`2 ÿ 1�, in
dimensionless form.

In order to produce Bree-type diagrams in the usual standards, we de®ne the additional dimensionless
thermal parameter

q̂ :� EcH�Hint ÿHext�
2rY�1ÿ m� � �`2 ÿ 1�q �29�

with bounds 0 and q̂ :� �`2 ÿ 1��q � EcH
�H=2rY�1ÿ m�.

4.2. Elastic stresses

External loading for the tube is given, in shakedown analysis, by the elastic stress solutions: T p, under
pure pressure, and T q, under pure thermal loading. These stress ®elds are given below, in dimensionless
form, by using the reduced stress tensors ~T :� �1=rY�T ; ~T p :� �1=prY�T p, and ~T q :� �1=qrY�T q. Accord-
ingly, variable loading produce the following elastic stress:eT � peT p � qeT q; �30�
where the basic elastic ®elds are

(i) Elastic stresses due to pressure loadingeT p
r � 1ÿ rÿ2; eT p

h � 1� rÿ2; eT p
z � 1: �31�

Hence, the deviatoric components are eSp
r � ÿrÿ2; eS p

h � rÿ2, and eSp
z � 0.

(ii) Elastic stresses due to temperature loadingeT q
r � rÿ2 ÿ 1� 2b ln r; �32�

eT q
h � ÿrÿ2 ÿ 1� 2b�1� ln r�; �33�
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eT q
z � 2�ÿ1� b�1� 2 ln r��: �34�

Therefore, the mean stress is eT q
m � 4

3
�ÿ1� b�1� 2 ln r��, and the deviatoric components are

~Sq
r � 1

3
�1� 3rÿ2 ÿ 2b�2� ln r��; �35�

~Sq
h � 1

3
�1ÿ 3rÿ2 � 2b�1ÿ ln r��; �36�

~Sq
z � 2

3
�ÿ1� b�1� 2 ln r��: �37�

The local domain of variable loading, D�r�, is a parallelogram with four vertices f ~T k�r�; k � 1; . . . ; 4g
given by Eq. (30) with �p; q� � f�0; 0�; �0; �q�; ��p; �q�; ��p; 0�g.

4.3. Plastic shakedown

Firstly, it is recognized that the critical points, where the largest variations of elastic stresses take place
are all the points on the internal surface of the cylinder. Consequently, the analysis reduces to a local
optimization problem associated to the domain of elastic stress variation D�r� for r � `ÿ1.

Secondly, it is also recognized that a critical alternating plasticity cycle may consist of yielding under
pure pressure followed by reverse yielding under pure temperature loading. Accordingly, the solution of the
local optimization problem translates and ampli®es the quadrilateral D�`ÿ1�, so that the two opposite
vertices �prY

eT p and �qrY
eT q become a diameter of the Mises cylinder, whose radius is

��������
2=3

p
rY.

Thus, the critical ampli®ed parameters �p; q� � �x�p;x�q� satisfy the following condition:

kx�q~Sq�`ÿ1� ÿ x�p~Sp�`ÿ1�k � 2
��
2
3

q
: �38�

Substitution of Eq. (31), (35), (36), and (37) in the above condition leads to

3�x�p�2`4 � 4�x�q�2�`2 ÿ b�2 � 6�x�p��x�q�`2�`2 ÿ b� � 4; �39�
which is an ellipse in a diagram for the critical values �p; q� � �x�p;x�q�. Moreover, we can write the ex-
pression for the alternating plasticity safety factor, for prescribed bounds ��p; �q�, as

x � 2��������������������������������������������������������������������������
3�p2`4 � 4�q2�`2 ÿ b�2 � 6�p�q`2�`2 ÿ b�

q : �40�

The limit for alternating plasticity, i.e. ellipse (39), is written below in terms of the critical parameters
� p̂; q̂� � �xp̂;xq̂� (Eqs. (25) and (29)), and plotted in the Bree-type diagram of Fig. 1.

�xp̂�2`4�`2 ÿ 1�2 � 4�xq̂�2b2�`2 ÿ b�2 � 2
���
3
p
�xp̂��xq̂�b`2�`2 ÿ 1��`2 ÿ b� � 4b2�`2 ÿ 1�2: �41�

For moderately thin tubes, and in the range of application of this limit, shown in Fig. 1, this ellipse is very
close to its tangent at �xp̂;xq̂� � �0; `2 ÿ 1=`2 ÿ b����

3
p

`2�`2 ÿ 1�
4b�`2 ÿ b� xp̂ � xq̂ � `2 ÿ 1

`2 ÿ b
: �42�

Further, the curve corresponding to alternating plasticity of thin tubes is obtained from Eq. (41) or Eq. (42)
with `! 1�, and reads���

3
p

2
xp̂ � xq̂ � 2: �43�
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This exact theoretical solution for thin tubes is close to the approximation given by the extended Bree
solution p̂ � q̂ � 2 (see, for instance, Robinson, 1991). Both the lines are shown in Fig. 1.

Finally, we recall that alternating plasticity becomes the critical regime under pure pressure loadings for
very thick tubes, those with `P 2:2185, as pointed out by Lubliner (1990, p. 213). This result can be derived
from Eq. (41) by setting q̂ � 0, thus obtaining xp̂ � 2b`ÿ2, and then comparing this critical pressure with
the instantaneous collapse pressure p̂ � 1. Hence, the transition cylinder veri®es 2b`ÿ2 � 1, which, in view
of the de®nition (26) of b, leads to the equation 1ÿ `ÿ2 � ln `, with the solution ` � 2:2185.

4.4. Incremental collapse

In order to compute the safety factor q for simple mechanisms of incremental collapse, by means of the
kinematical formulation, we consider general expressions for plastic mechanisms. Let vr � Vr=Rext and
vz � Vz=Rext denote dimensionless counterparts of the radial and axial velocities Vr and Vz. For a long tube,
the deformation rates are (Lubliner, 1990)

Dr � dvr

dr
; Dh � vr

r
; Dz � constant: �44�

It follows from tr D � 0 that d�rvr�=dr � Dzr � 0, and hence the velocity ®eld depends on two constants, cv

and Dz, such that

vr � cv

r
ÿ 1

2
Dzr: �45�

Then

Dr � ÿcvrÿ2 ÿ 1
2
Dz; Dh � cvrÿ2 ÿ 1

2
Dz: �46�

and kDk � ��������������������������
4c2

vrÿ4 � 3D2
z

p
=
���
2
p

.
As a consequence, the optimization problem, given by the kinematical formulation of SMIC, Eq. (19),

becomes a mathematical programming problem in the variables cv and Dz. The objective function is the

Fig. 1. Shakedown boundaries for closed thick tubes under independent variations of pressure and (logarithmic) temperature. Bree-

type diagram: thermal load q̂, Eq. (29), versus pressure p̂, Eq. (25). AP: alternating plasticity, IC: incremental collapse, (- - -): extended

Bree solution.
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quotient of the plastic dissipation v�D� over the maximum power of loads u�D�. No constraints are present.
Moreover, this kinematical principle reduces to a one-variable problem, because it can be chosen, for in-
stance, cv � 1, due to the fact that v�D� and u�D� are homogeneous of the ®rst degree.

The solution to the kinematical formulation (19) is developed in the sequel.

4.4.1. Plastic dissipation
The total and local plastic dissipation functions are

v�D� � 2pR2
ext

Z 1

`ÿ1

v̂�D�r��r dr; �47�

v̂�D�r�� �
���
2

3

r
rYkD�r�k: �48�

Then, substituting Eq. (46)

v�D� � 2p���
3
p R2

extrY

Z 1

`ÿ1

��������������������������
4c2

vrÿ4 � 3D2
z

q
r dr: �49�

By performing the integration above, the following exact expression of the plastic dissipation for a
general mechanism is obtained.

v�D� � p���
3
p R2

extrY 4cv ln `

 
�

��������������������
4c2

v � 3D2
z

q
ÿ

��������������������������
4c2

v � 3D2
z `
ÿ4

q
ÿ 2cv ln

2cv �
��������������������
4c2

v � 3D2
z

p
2cv �

��������������������������
4c2

v � 3D2
z `
ÿ4

p !
: �50�

4.4.2. Maximum power of loads
Recalling Eq. (6), the total and local maximum power functions for loading are

u�D� � 2pR2
ext

Z 1

`ÿ1

û�D�r��r dr; �51�

û�D�r�� � sup
k�1;...;4

T k�r� � D�r�; �52�

where, due to Eq. (46)

T k�r� � D�r� � cvrÿ2�T k
h �r� ÿ T k

r �r�� � 3
2
DzSk

z �r�: �53�
With respect to the supremum in Eq. (52), we assume now, and con®rm a posteriori, that (i) the load

system 4, i.e. T 4 � �prY
eT p, is active for r 2 �`ÿ1; rt�, and (ii) the load system 3, i.e. T 3 � prY

eT p � qrY
eT q , is

active for r 2 �rt; 1�. The transition radius rt is obtained from the following condition:

T 3�r� � D�r� � T 4�r� � D�r�: �54�
But T 3 � qrY

eT q � T 4; hence eT q�r� � D�r� � 0 and then

2cvrÿ2
t �rÿ2

t ÿ b� � Dz�1ÿ b�1� 2 ln rt�� � 0: �55�
Hence, the ratio Dz=cv is the function of rt given by

Dz

cv
� 2�br2

t ÿ 1�
r4

t �1ÿ b�1� 2 ln rt�� : �56�

From now on, we consider the kinematical formulation at hand as an optimization problem in terms of
rt while cv and Dz are dependent variables given by Eq. (56).
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Recalling the previous hypothesis, concerning active loading, it can be writtenZ 1

`ÿ1

û�D�r��r dr �
Z rt

`ÿ1

T 4 � Dr dr �
Z 1

rt

T 3 � Dr dr �57�Z 1

`ÿ1

û�D�r��r dr � qprY

Z 1

`ÿ1

eT p � Dr dr � qqrY

Z 1

rt

eT q � Dr dr: �58�

Now, using Eqs. (53) and (31)Z 1

`ÿ1

eT p � Dr dr � cv�`2 ÿ 1�: �59�

Similarly, from Eqs. (53), (35), (36) and (37)Z 1

rt

eT q � Dr dr �
Z 1

rt

f2cv�brÿ1 ÿ rÿ3� � Dz��bÿ 1�r � 2br ln r�gdr �60�Z 1

rt

eT q � Dr dr � cv�1ÿ rÿ2
t ÿ 2b ln rt� � 1

2
Dz�ÿ1� r2

t �1ÿ 2b ln rt��: �61�

Finally, introducing Eqs. (59), (61), and (58) in Eqs. (51), we arrive to the expression of the maximum
power of loading

u�D� � pR2
extrYf2cv�q�p�`2 ÿ 1� � q�q�1ÿ rÿ2

t ÿ 2b ln rt�� � Dzq�q�ÿ1� r2
t �1ÿ 2b ln rt��g: �62�

4.4.3. The boundary for incremental collapse
When numerical values for the limits ��p; �q� are prescribed, the set of relations (50), (62), and (56)

completely determine the one-variable minimization problem whose optimal value is the safety factor, q,
for simple mechanisms of incremental collapse

q � inf
rt

v�D�
u�D� : �63�

To this purpose, an iterative procedure is required. For instance, the Newton method may be used. The
resulting curve of critical pairs �qp̂; qp̂�, for a tube with ` � 1.25 is plotted in Fig. 1.

Additionally, we veri®ed in this application the necessary condition (15) of Proposition 1 to guarantee
that the computed amplifying factor, q, restricted to simple mechanisms is in fact the true solution, l, of the
elastic shakedown analysis. Verifying this necessary condition requires the computation of the residual
stress ®eld, T r, and afterwards proving that T r � T k is plastically admissible for k � 1; . . . ; 4 and for all r.
Since we have now the local value for the strain rate, D�r�, the constitutive relation gives the corresponding
stress, say T c�r�. This stress T c�r� equals T r�r� � qT 4�r� in r 2 �`ÿ1; rt�, and equals T r�r� � qT 3�r� in
r 2 �rt; 1�. Thus, we compute the residual stress by using T r�r� � T c�r� ÿ qT 4�r� in r 2 �`ÿ1; rt�, and
T r�r� � T c�r� ÿ qT 3�r� in r 2 �`ÿ1; 1�.

In summary, the necessary condition, (Eq. (15)) to prove that the solution of the SMIC problem is the
exact safety factor of elastic shakedown, i.e. that

l � q �64�
is veri®ed for the tube under thermo-mechanical loading considered.

Although the exact solution of this shakedown analysis is now complete, we give in the sequel a simple
upper bound, which happens to be very close to the exact value. This upper bound is obtained by choosing

rub
t � bÿ1=2; �65�
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and then computing the corresponding fraction v�D�=u�D�. Notice that for the above value of rt, Eq. (56)
gives Dz � 0. Then, from Eqs. (50) and (62), it follows that

l6 qub :� 2 ln `���
3
p f�p�`2 ÿ 1� � �q�1ÿ b�1ÿ ln b��g : �66�

This gives the following straight line in the Bree-type diagram of Fig. 1:

qubp̂ �
���
3
p

b�1ÿ b�1ÿ ln b��
�`2 ÿ 1�2 qubq̂ � 1: �67�

Notice that qubp̂ � 1 for q̂ � 0.
For a tube with `� 1.25, shown in Fig. 1, and with prescribed loading limits �p̂; q̂� �

�0:800716; 0:895410�, the exact solution is l � 1.000000, with rt � 0.891375 and Dz=Cv � 0.155800.
In this case, the upper bound is qub � 1.005992 (0.6% error), for rub

t � 0.890730.
The curve corresponding to critical combinations (qp̂; qq̂) for incremental collapse of thin tubes is ob-

tained by using the same minimization procedure and with `! 1�. However, a simpler way to obtain the
same result is to take limits in Eq. (67). This leads to

qp̂ �
���
3
p

8
qq̂ � 1: �68�

Likewise in alternating plasticity, this exact theoretical solution for thin tubes, shown in Fig. 1, is close to
the approximation given by the extended Bree solution p̂ � 0:25q̂ � 1 (Robinson, 1991).

Finally, for thin tubes, the intersection of Eqs. (68) and (43) gives the set of parameters q̂ � 2p̂ �
8�4ÿ ���

3
p �=13 producing l � x � q � 1, i.e. the boundary between the regime of pure alternating plasticity

and ratcheting.

5. Finite element solutions for tubes

In this section, a mixed ®nite element of shakedown analysis of tubes is described. The resulting nu-
merical procedure is validated by comparing with the exact solution for the closed tube, given in the
previous section, and then applied to the case of a restrained tube under pressure and logarithmic tem-
perature variations.

The formulation of the ®nite element procedure is brie¯y considered here. However, the mathematical
programming algorithm used for solving the discrete optimization problem, which was specially developed
for shakedown analysis, is reported elsewhere.

The one-dimensional ®nite element discretization presented in the sequel is suited for long thick tubes
under internal and external pressure. The basic temperature patterns, across the wall thickness, associated
to each variable thermal parameter are arbitrary. The end conditions of the tubes may be ®xed ends or
those corresponding to open or closed tubes, as described in Lubliner (1990).

Avoiding the FE locking phenomenon is important in the considered solids, with symmetry of revolution
in the geometry and loadings, and undergoing purely plastic ¯ow. Locking is prevented here by using a
mixed interpolation. Accordingly, the weak conditions of equilibrium and zero velocity divergence are
taken into account to select the stress and velocity shape functions.

The radial component of the velocity vr is interpolated quadratic in each ®nite element and continuous
across element. The axial component of the strain rate Dz is constant inside the element. The mean stress Tm

is also constant in each element while all components of the deviatoric stress S are linear in any element and
discontinuous at interelement nodes. The generic element i has three nodes: the left and right ones are 1 and 2,
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respectively and the mid-point is 3. The vectors of nodal parameters for the ith element, vi for velocities and
T ri for residual stress components, are

vi � �v1
r v2

r v3
r D3

z �T; �69�

T ri � �Sr1
r Sr1

h Sr1
z Sr2

r Sr2
h Sr2

z T 3
m�T; �70�

where the superscript T indicates matrix transposition.
The strain rate ®eld D�r� and the residual stress distribution T r�r� are obtained by means of the ®nite

element interpolations

D�r� � DN i
v�r�vi; T r�r� � Ni

T �r�T ri; �71�
where N i

v�r� and N i
T �r� are the interpolation matrices for velocity and stress. This leads to the following

discrete form of self-equilibrium written in terms of the global vector of residual stress parameters T r

(collecting T ri for all elements)

BT T r � 0; �72�
where the matrix B is assembled from its element counterpart

Bi � 2pR2
ext

Z r2

r1

NiT
T �r�DN i

v�r�r dr �73�

with r1 and r2 denoting the non-dimensional radial coordinates of the left and right nodes of element i.
Consider now the basic elastic stress pro®les de®ning the domain of loading variations. Let T k�r�, with

k � 1; . . . ; n`, be the prescribed elastic stress associated to each vertex of the load domain in the ®nite-
dimensional space of loading parameters. For instance, in the present applications, concerning independent
variations of the pressure parameter p 2 �0; �p� and the thermal parameter q 2 �0; �q�, there are n` � 4
vertices, identi®ed by �p; q� � f�0; 0�; �0; �q�; ��p; �q�; ��p; 0�g and T 1�r� � 0; T 2�r� � �qT q�r�; T 3�r� � �pT p�r��
�qT q�r�, and T 4�r� � �pT p�r�, with T p�r� and T q�r� denoting the stress distributions due to single unit pressure
or thermal loadings (given in Eqs. (30)±(34) for the closed tube, and in Eqs. (79)±(82) for the restrained
tube).

The element vectors collecting nodal values of the prescribed elastic stresses are chosen in accordance
with de®nition (70) of the vector of nodal stress parameters, i.e.

T ki � Sk1
r Sk1

h Sk1
z Sk2

r Sk2
h Sk2

z T k3
m

� �T �74�
for k � 1; . . . ; n` and i � 1; . . . ; ne, with n` denoting the number of basic loads (vertices) and ne denoting the
number of elements. In the above equation, Sk1

r ; Sk1
h ; Sk1

z are the deviatoric components of the elastic stress
T k�r� at the left node of element i. The above symbol T k3

m , representing mean stress all along the element, is
de®ned as the arithmetic mean of the mean stress components of the elastic stress tensor T k�r� computed at
both ends of the element.

The plastic admissibility constraint in Bleich±Melan's principle (7), in terms of the combined stress ®elds
leT k�r� � T r�r�, is now imposed at the left and right nodes of each element. This is accomplished by simply
restraining the nodal values. For the von Mises model, the following two constraints must be imposed for
each element i:

f1�T i� :� 3
2
�S1

r �2
h

� �S1
h�2 � �S1

z �2
i
ÿ r2

Y6 0; �75�

f2�T i� :� 3
2
�S2

r �2
h

� �S2
h�2 � �S2

z �2
i
ÿ r2

Y6 0; �76�
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where

T i :� lT ki � T ri: �77�
The interpolations above must now be introduced in a mixed extremum principle for elastic shakedown

as the mixed formulation given in Zouain and Silveira (2000). The resulting discrete optimization problem
may then be put in one of its dual forms. For instance, the discrete equilibrium formulation for elastic
shakedown is

l � sup
l�;T r

l�
BT T r � 0
f1�lT ki � T ri�6 0
f2�lT ki � T ri�6 0; k � 1; . . . ; n`; i � 1; . . . ; ne:

������ �78�

This discrete optimization problem is solved here by using an algorithm based on a Newton-like iteration
for the equalities pertaining to the set of optimality conditions. A correction is then performed in order to
preserve plastic admissibility in each iteration.

The present ®nite element model for shakedown analysis of tubes was applied to the case of the closed-
end tube, described in the previous section, in order to validate the numerical procedure by comparing with
the exact solution already obtained. In this case, the ®nite element results reproduce the exact solutions of
the thick tube in Fig. 1, to within an error of 0.4%, when 20 ®nite elements are used.

5.1. A restrained tube under variable temperature and pressure

In this section, we present numerical solutions for a ®xed-end thick tube submitted to independent
variations of internal pressure and temperature. The material and the loading conditions are the same
considered in previous sections for the case of a closed tube. That is, at any instant, the temperature decay
through the wall thickness is logarithmic.

Due to the axial restraint, the simple mechanisms of incremental collapse, that solved exactly the closed-
end tube, are no longer critical, as detected in the ®nite element solution.

The notation here is as de®ned in Section 4.
The four basic loadings T k�r� are determined from the following stress ®elds:

(i) Elastic stresses due to pressure loading

~T p
r � 1ÿ rÿ2; ~T p

h � 1� rÿ2; ~T p
z � 2m: �79�

(ii) Elastic stresses due to temperature loading

~T q
r � rÿ2 ÿ 1� 2b ln r; �80�

~T q
h � ÿrÿ2 ÿ 1� 2b�1� ln r�; �81�

~T q
z � 2�m�bÿ 1� � 2b ln r�: �82�

The ®nite element procedure for shakedown analysis is applied to thin tubes �`6 1:1� and a thick tube
with ` � 1:25. The results are shown in Fig. 2.

The same example of application is treated in Hyde et al. (1985) by performing incremental ®nite element
analysis under assumed loading cycles. Then, the stabilized ratchet cycle is identi®ed so as to measure the
ratchet strain. Some contours of constant ratchet strain are produced by interpolation or extrapolation over
a set of results (a family of curves is ®tted to the data). Finally, the shakedown/ratcheting boundary is
predicted, in Hyde et al., by extrapolation of these values.
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Present results are compared, in Fig. 2, with those obtained by Hyde et al. We observe that

1. The points � p̂; q̂� � �0:8660; 0:688� and � p̂; q̂� � �0:9099; 0:688�, marked in Fig. 2, correspond to ef-
fective incremental collapse, with steady state ratchet strains equal to 0.111 and 0.363, respectively, as
reported in Table 4 of Hyde et al. (1985). Both points belong to the incremental collapse domain of the
present solution and they are very close to our shakedown/ratcheting boundary.

2. The point (p̂; q̂� � �0:82; 0:688� predicted by Hyde et al. to be at the zero ratchet strain contour, by
means of extrapolation, is also very close to our direct solution.

Therefore, the present numerical results are in good agreement with those of Hyde et al. (1985).

6. Conclusions

In the ®rst part of the paper, we discuss the upper bound lub :� minfx; qg for the classical shakedown
safety factor l, with x associated to alternating plasticity and q to simple mechanisms of incremental
collapse. This upper bound is simpler for analytical or numerical computations and admits a meaningful
interpretation. The generation of the corresponding variational principles is based on dualization tech-
niques of convex analysis. A brief summary of previous results and applications of this theoretical back-
ground is also given here. Finite element approximations using this bounding formulation can be found in
Silveira and Zouain (1997). However, the focus in the present work is on the exact analytical solution of the
Bree problem, given in Section 4.

A closed thick tube under independent variations of internal pressure and wall temperature gradient,
assumed logarithmic, is considered in Section 4. Once the model assumptions are established, no further
approximations are present in solution, which is then called exact. For the range of loadings that produce
ratcheting, the exact solution is obtained by solving the bounding kinematical formulation. Most of all,

Fig. 2. Shakedown boundaries for ®xed-end thick tubes under independent variations of pressure and (logarithmic) temperature. Bree-

type diagram: thermal load q̂, Eq. (29), versus pressure p̂, Eq. (25). (- - -): extended Bree solution. (�): speci®c cycles producing in-

cremental collapse, obtained by Hyde et al. (1985). ���: extrapolated ratcheting boundary for thin tubes, predicted by Hyde et al.

(1985).
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Proposition 1 is then recalled to ensure that the computed solution, restricted to simple mechanisms of
incremental collapse, is in fact the true solution in the elastic shakedown analysis.

This example of application, in Section 4, emphasizes the crucial role of the necessary condition, given by
Eq. (15) in Proposition 1 to identify whenever the upper bound coincides with the exact elastic shakedown
factor.

Several linear approximations, for thick and thin closed tubes, are also presented and discussed in
Section 4. The shakedown diagram for the closed tubes, given in Fig. 1, compares well with existing ap-
proximations (Bree, 1967; Gokhfeld and Cherniavsky, 1980; Ponter and Karadeniz, 1985; Hyde et al., 1985;
K�onig, 1987; Robinson, 1991; Phan, 1995).

For the variant of the Bree problem concerning shakedown of a closed tube under independent pressure
and logarithmic temperature, as stated by Gokhfeld and Cherniavsky (1980), the analytical expressions in
Section 4 are the only exact direct solutions available to the authors knowledge.

In the last part of this paper, Section 5, a ®nite element procedure for shakedown of tubes is proposed
and applied to the same closed tube and a restrained tube, under identical loading conditions.

The ®nite element solution for the restrained tube, which is another variant of the Bree problem is also
the ®rst direct solution of this problem, including thick tubes. The interaction diagram obtained here is in
good agreement with the speci®c incremental collapse cyclic loads reported by Hyde et al. (1985) and close
to the boundary predicted in the later reference, for the case of thin tubes.
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